Solar now being the cheapest energy source made its rounds on Lemmy some weeks ago, if I remember correctly. I just found this graphic and felt it was worth sharing independently.
This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.
Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.
Rules:
1: All Lemmy rules apply
2: Do not post low effort posts
3: NEVER post naziped*gore stuff
4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.
5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)
6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist
7: crypto related posts, unless essential, are disallowed
I want a battery in my house big enough for me to lose power for 2 days and still cook with electric stove and have hot water from water heater.
That is my dream for every house. To be able to have a stable power well from some kind of battery fed by a solar + grid sharing. To be able to offer extra power to a neighbor if they need it for a project or a party or help however.
I don’t want to be energy isolated from the grid. I want to be energy insulated and be of the grid.
There is this vision for the future, where people can use the battery in their electric car (or a separately bought battery) to store power, either produced by their own cheap solar or from the grid during over-production. And then some software could sell that energy back into the grid at night or during high demand.
If that becomes a reality, we might have it at least so that if a chunk of the grid gets cut off for a bit, it can actually tide that over.
This isn’t so much a vision for the future, as it’s an option right now.
I can’t wait until work puts in car chargers- Top off the battery for free during the day, come home and sell that juice back to the grid, baby!
Just pointing out that the grid is paid for by your electric bill, roughly half of what you pay is for delivery (paying to maintain the equipment needed to deliver you that energy), the other half is for supply (paying the power plant that generated the energy). So even if you and all your neighbors are energy independent you’ll still be on the hook for at least half your bill, or they’ll have to recoup it in taxes or something.
Not saying that’s a bad thing, just clarifying a common misconception that going solar should not mean you eliminate your electric bill. In fact many places where solar does offset 100% of your electric bill are ending up with the rich owning solar and the poor paying to maintain the grid for them.
Hydrogen is the answer for that, cost about 100k today hopefully those cost will decline fast
https://www.homepowersolutions.de/produkt/
The problem with Hydrogen, is that its not efficient (fuel cells apparently are only 40-60% efficient). In contrast, batteries are 90% or more efficient (and improving)
So, you’d be wasting 50% of the power generated, and wasting fresh water too… Thats all assuming too that the additional minerals in the water won’t cause extra issues either.
Battery costs keep dropping, and the technology keeps improving rapidly.
If they can get the efficiency much higher, maybe… It also might make sense for long range cars (at the moment) due to energy density
But, in practice, companies like BP and traditional gas companies are the main ones who benefit from a hydrogen economy. Because they can use non-renewable to undercut everyone
What happened to Nuclear option?
The Cold War is over, man.
This guy gets it.
Costs are increasing.
Why?
nonsense regulation combined with some high profile failures from barely modified gen 2 designs being built in countries where there hasn’t been a nuclear construction industry for decades so they have to build the infrastructure from scratch each time. it’s the wrong approach. the SMR route way is better.
Huge up front costs.
https://world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power.aspx
“On a levelized (i.e. lifetime) basis, nuclear power is an economic source of electricity generation, combining the advantages of security, reliability and very low greenhouse gas emissions. Existing plants function well with a high degree of predictability. The operating cost of these plants is lower than almost all fossil fuel competitors, with a very low risk of operating cost inflation. Plants are now expected to operate for 60 years and even longer in the future…”
“World Nuclear Association published Nuclear Power Economics and Project Structuring in early 2017. The report notes that the economics of new nuclear plants are heavily influenced by their capital cost, which accounts for at least 60% of their LCOE. Interest charges and the construction period are important variables for determining the overall cost of capital. The escalation of nuclear capital costs in some countries, more apparent than real given the paucity of new reactor construction in OECD countries and the introduction of new designs, has peaked in the opinion of the International Energy Agency (IEA). In countries where continuous development programmes have been maintained, capital costs have been contained and, in the case of South Korea, even reduced. Over the last 15 years global median construction periods have fallen. Once a nuclear plant has been constructed, the production cost of electricity is low and predictably stable.”
TLDR: If you weren’t already on the nuke train when it was going, the upfront costs are too much to make it worth it this late in the game. You are better off just getting solar/wind + battery. If you already invested in nuke, then you are good to keep updating them.
snuffed out by big oil who co-opted anti nuclear weapons protestors to take out their competition
my bill has gone up 89%
Well the electric exec’s kid needs a third Ferrari to go with the third Lamborghini they got last year! You’re not gonna be so heartless as to deprive a 32 year old child of their birthday wish are you?
Government subsidies work for getting new technologies out of the prototype stage and into practical deployment. Solar and wind are both good demonstrations.
It doesn’t matter how cheap solar is. Fossil fuels are still more profitable, because once a fossil fuel plant is built, it needs fossil fuel to run. You can’t do the same with sunlight. We literally cannot shift away from fossil fuels under the current profit driven model.
More profitable for fossil fuel companies, sure. And they will lobby to stay in business.
But no one needs fossil fuel companies. If you can sell 1 MWh power, that’s a fixed amount of income. If you have less costs to cover (what the graphic shows), then that’s more profit for you.
I’m speaking from an American perspective, but what you’re describing is part of the problem. Power companies are legally not allowed to make a profit from selling electricity here. They make a profit from the government giving them money to expand their services (this model was developed following world war 2 to encourage post war growth).
Again, under America’s current model, solar is not profitable, especially not for large corporations.
Hmm, interesting. Here in Germany, power companies are partially privatized and I always thought, whomever came up with that nonsense took inspiration from the turbo-capitalism in the USA. Apparently not.
Do they need to be profitable, though, in your model? It mostly sounds like a traditional public service, where the government could just tell them to use the money for solar…
The power companies here are privately owned, and America has a lot of laws dealing with what the government can and can not tell private companies what to do. Most of the laws deal with what the government cannot do. Basically, the company sells electricity at cost, then sends the government a letter that’s like, “Hey, we need $$$ for repairs, upgrades, and stock holders. Here’s all the upgrades we want.” And the government is like “Sure, this is America, gotta turn a profit,” and gives the utility companies whatever they ask for. Then the utility companies just give all the money to the stock holders, perform the bare minimum repairs to operate, and just lie to the government about what they did with the money. There is an especially egregious case in South Carolina where a utility claimed for years that they were going to build a nuclear plant to help meet energy demands in the area. Well after an audit, turns out the owner just pocketed all that money. That guy was punished, but see how bad it has to get before anything happens?
This video does a much better job at explaining it than I ever could. It’s long, but they explain how utilities make a profit in the first 15 mins. https://youtu.be/2n_au5Hje_E?si=S9e8o7QQpFjueZta
Cool…but where’s offshore wind?
dat place called Scotland?
No, silly. That’s onshore. Scotland, see? Land means, y’know, on shore? I want to know about the windmills in the ocean.
(Do I have to put this here? /s)
Kind sir, with the current tendencies in overall temperatures that excite changes on the far north and south, you simply have to be patient till onshore become offshore just as you desire.
I’m not quite sure, why it was left out of that graph, maybe they didn’t have matching data, but it is shown here (from the same source article):
Clearly nuclear is the future!
You do realise solar and wind gets pricier and pricier to integrate as the level of steerable capacity decreases?
What you are looking at here is “cost to install ‘rated capacity * load factor’”. A big part of the reason renewables are still cheaper is that we have a lot of backup steerable capacity, mainly in the form of gas plants in the west and coal plants everywhere else.
Renewables dump electricity onto the grid and then say “here, buy this!”. And the only reason the grid can respond and say “sure” is that it can tell the steerable gas and coal plants “turn off for a bit, these other plants are dumping a crap tonne of capacity onto the grid”.
Given the insane challenge in building enough storage and/or enough transmission capacity, you are going to need some steerable capacity beyond 70-80% renewable to continue to have cheap integration of intermittent renewables. Do you want that to be based on fossil fuel?
If we wanted to treat renewable capacity in the same way as we have treated other generators, we should say “I want steerable capacity between 0-1200 MW” from this field of wind turbines!”. That would force the currently externalised cost of guaranteeing generation onto the builders of renewables.
Right now, a lot of the real cost is hidden elsewhere in the grid - so it’s no wonder it looks so cheap.
Please don’t misread my comment as being against renewables, which we need a lot more of. I’m against crappy accounting.
We just have to build a transatlantic power line - It’s always sunny somewhere in the world /s
yeah, do a nuclear backup for renewables. https://en.wikipedia.org/wiki/Integral_Molten_Salt_Reactor this reactor outputs solar salt, which can store energy efficiently for hours and allow load following
However, your point also goes ageinst nuclear as this technology is not really steerable either. It produces a base supply. The lack of quick control of nuclear plant output even led to highways beeing lit in the night in Belgium (way back) to burn off the over supply.
The only technologies that can be quickly adjusted up and down are, to my knowledge, gas, hydro an battery storage. In a strictly renewable scenario (0 fossil, 0 nuclear fisson) it is imperative to have a lot of controllable reserves. Currently the plan is to use a mix of (pump) hydro, h2 and biomass powered gas plants and batteries in all shapes and forms (li-Ion, reflow, heat…) to be able to compensate peaks. This all is way more costly than just using wind and solar and hope supply will always be higher than demand.
For those interested I always recommend the yt channel “just have a think”. It has really awesome content about green technologies and the current state of affairs concerning the long and hard journey to 0 carbon.
That is honestly an urban myth that nuclear isn’t steerable. It’s not steerable in the second, but it is extremely steerable in the hour or the day, which is more than plenty given that renewables output change by the hour or day, rather than the second.
Yes it’s not frequency management - for that we have pumped storage and batteries. But it sure as shit is steerable enough for matching up with renewables. The wind doesn’t goes from Beaufort 6 to Beaufort 1 within a second.
also since fuel costs aren’t really a problem for nuclear power, you can just throw away excess generation. not the best idea but perfectly possible in a pinch
Wind and solar complement each other. The sun often shines when the wind isn’t blowing. We have plenty of historical weather data on how long the lulls where neither would work for a given region. That tells you how much storage you need to fill the gap. Pad that out, and you’re good.
Nuclear does nothing to help this calculation. It’s just expensive.
Not only that, but we don’t have to do this all at once. The math often works out that getting to 95% renewable is far easier than shooting for 100%, with existing fossil fuel plants making up the remainder. This is fully achievable by 2030, by which point we want to drastically reduce emissions. Then we can worry about the last 5%.
There is no such plan for nuclear. If you had all the permits signed off and dirt being shoveled right now, then you would not have a single MW of new nuclear feeding the grid by 2030. They take too long to build. Budget and schedule overruns are the norm, and it’s a wonder that anyone is investing money into them at this point.
In fact, they aren’t. The US federal government has shown a willingness to sign permits for new nuclear plants. Nobody is buying, and there’s no mystery as to why.
deleted by creator
This is a very interesting rabit hole you sent me into. Thanks for that!
Btw. I don’t get why you’re beeing downvoted. This is a civilised discussion and your comments are fair and well presented!
I started searching a bit about steering nuclear.
So as usual it doesn’t seem to be quite so simple. I found a paper from 2017 (in German https://publikationen.bibliothek.kit.edu/1000102277/121070976 ). interesting parts translated through deepl/chatGPT:
"The operating manuals of the NPPs show that they [nuclear power plants] exhibit considerable flexibility:
In the range close to full load (above 80/90% of the nominal Power), the output can be increased or decreased by up to 10% of the nominal output per minute. In the upper load range (above 50/60 % PNenn), the power plants can be regulated at 3.8-5.2 %/min (for some reactor types, this is reduced to around 1 %/min if individual fuel rods are defective).
For comparison: In lignite-fired power plants, this value is around 3 %/min, 4 %/min for hard coal-fired power plants and 6 %/min for natural gas steam or combined power plants 6 %/min. Only gas turbines, at 12 %/min, are significantly faster.
The lower load range (between 20 and 60%) is also possible, but in discussions with power plant operators it became clear that this has not yet been used in regular operation (apart from start-up and shutdown operations) and is not used in regular operation."
Also it seems that changing output puts stress on the whole systen. As well cited from the paper:
“Another factor is the number of cycles that the plants can undergo. Each load cycle stresses the material and, with frequent repetition, leads to signs of material fatigue. Nuclear power plants were designed for a specific maximum number of cycles during their construction. In the upper load range – for example, a reduction in power from 100% rated power to 80% and back (100-80-100) – coolant temperature and pressure hardly change. Therefore, the power plants are designed for up to 100,000 cycles of such nature. However, in the lower load range, the alternating stress on the components increases, and the maximum cycle count decreases significantly. The cycle 100-40-100, for instance, is allowed only 12,000 repetitions. For the cycle rated load-zero load-hot-rated load (100-0-100), a maximum of 400 cycles is specified. Assuming a plant lifespan of 40 years, this would correspond to 10 of these events per year.”
So there seems to be considerable flexibility but you don’t want to shut it off completely or run below say 50% of nominal power. Also start-up times from 0 seem to be very long (1-2 days). This might not be the perfect match for running together with renewables, but there are definitively possibilities. Even when it’s windy and the sun shines, renewables would need to be shut down and the more expensive nuclear plant would run and burn fuel.
Therefore, my opinion still stands: the ultimate goal should still be 0 burning stuff, 0 nuclear.
Hey, likewise, thanks for a sensible debate.
I definitely think 0 nuclear is possible, just a lot expensive than “mostly renewable with some nuclear.”
I’ve commented extensively on this before here on Lemmy, let me copy pasta here:
Here’s a couple of good papers and articles on the topic:
A systematic review of the costs and impacts of integrating variable renewables into power grids - a large meta-study from Nature Energy showing that the externalised additional cost of integrating 1 MW of renewable production hits £40/MWh between 75% to 85% renewable penetration. Beyond that no studies have been done, but already at this level, renewable would be more expensive than nuclear (at auctioned build-prices today).
Real-World Challenges with a Rapid Transition to 100% Renewable Power Systems - finds that even if you set the Value of Lost Load to £40,000/MWh in a 100% renewable grid, you’ll still get power outages after 2030. It’s not equivalent to externalised cost of renewable integration, but is a heavy indicator that without forcing massive fines on renewable providers, the reserve capacity won’t be provided (it’ll be cheaper for them to just pay the fine). The study finds that a fine of £4 million (!) per required-but-not-fulfilled MWh is needed to encourage providers build the reserve capacity (through distribution, storage etc.).
How much can nuclear power reduce climate mitigation cost? - shows that nuclear will lower the cost of getting to zero carbon electricity product by 40%+, compared to refusing to use nuclear energy production.
Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems - shows some of the challenges of the assumptions that people make in thinking renewables will get us all the way there.
Projected Costs of Generating Electricity - shows that, all costs considered, nuclear remains an extremely cheap way to create energy, even up against renewables.
Local Complementarity of Wind and Solar Energy Resources over Europe: An Assessment Study from a Meteorological Perspective - shows that at least in Europe, wind and sun don’t anti-correlate (in other words, we’re not going to get energy from the sun on non-windy days and energy from the wind on cloudy days. Also shows there are many periods (days long) in Europe where we have don’t get neither sun nor wind. So storage will have to last us days across Europe.
Many of these articles refer to many other articles you may find interesting.
Overall, my point is that it does us (collective “us”, not just “you and me”) no good to argue that “it’ll be alright if we just commit to renewables”. One has to argue against these peer reviewed studies, done by experts in the field, many collecting and meta-reviewing many other studies, to argue that “renewables will be enough”.
And these are not “cooky studies” in “cooky journals”. Nature, Cell, Joule are some of the most respected journals, with the highest impact ratings and the authors & their reviewers have studied these topics for years.
I’m all for more renewables! But it won’t be enough!
Price of onshore wind is about as low as solar.
I’d like to add wind to my solar eventually. Multi-modal makes a lot of sense to me. Pretty sure my solar installers don’t do that and I have no idea who does do that…if anyone. I’ll investigate someday.
There is no home wind power industry because unlike solar, wind power is only cheap when you go big.
To be fair home solar is also not $89 for a Mwh. Least not here.
deleted by creator
Very cool, but not cheap.
Oh man, If I was inclined to dox myself online I’d have a guy for you. A local construction company here has a green energy side company and they do both public and private installations of wind and solar, from large owners of open land, to farmers, to even residential. Hopefully theres something near you like that.
Unfortunate that DMs don’t work very well here in the fediverse.
I just installed a 9.3 kW system with individual microinverters under each panel for grid stability and it is absolutely amazing how much you can power all day without threatening a massive bill at the end of the month. I still import power at night, but the power companies usually have agreements where you get credits for all wattage exported to the grid to cover your imported power at night, because both parties win in that contract.
deleted by creator
Do you mind sharing what price one can expect for an install that size (or similar)? I’ve been wanting to install a system like that on my house for a couple years. Now that prices on hardware are more affordable it’s becoming very tempting. I’d love to do it myself.
It depends, $180/mo for 25 years is the agreement and it’s directly connected to the grid both ways which required additional work from the power company to inspect and approve. I think given the projections it was rated for about 25,000 kWh per year * 25 years (approaching 85% efficiency after 30 years), which is a good amount of total production for my needs. Edit: it’s worth considering what $180/mo will look like in 5 to 20 years… it will probably be significantly cheaper compared to other power sources because it’s generated locally.
Yes the time value of money can work heavily in your favor when projecting that far out. The way the housing market is right now, I might be here for a while 🤣 Thanks for the response!
deleted by creator
Get 800kwh to 1mwh a month depending on sun coverage. Cost me 23k paid in full.
AUS here, I just got a 10kw system installed last month, cost 9.5k AUD for everything. So far monitoring the generation, I’ll be getting paid next time the bill comes around :)
Well, looking at these prices here listed seems like solar in US is really costly for some reason? I have a 9.8kWp system in europe, installed a year or two ago, and it cost me 12k euros. Out of that, I’ll get 2ke back in tax rebates, so 1ke for 1kwp.
During summertime, I get 1500kWh approx in a month. I have one AC unit and two electric cars, and a 24U server rack, and can live without electricity bills some months.
Where are you located and what was the total cost? When I last got quotes 12 years ago, it was insanely expensive ($ 70k ) .
deleted by creator
Is it free standing or rooftop? Many consumer companies didn’t do free standing when I last looked into it.
deleted by creator
What surprises me, in a way, is that photovoltaics are literally 3,5 times cheaper than just mirrors reflecting light onto a tower. It got REAL cheap. Wish it’d go further!
The mirrors are the not the expensive part.
What is? Thermal to electricity conversion?
Yup. Steam turbine generators have a lot of moving parts, and moving parts break
Got it, thanks
Sweet, now get the panels and installation cheaper so I can afford to put it on my house
We had a solar salesman come by once and told us he could lower our electricity bill the same amount as it would cost us to install the solar panels.
I knew there was something up with this but I decided to let him continue to talk anyways. He does this whole presentation with solar panels and how great they are for a good 30 minutes.
Finally we get to the money part and he keeps emphasizing that they will lower my electricity bill so the cost of them will be made up there. I push him for the total cost of them plus installation and I about died.
$30,000??? They literally wanted me to pay for these for 30 years. As long as my mortgage! Aaaaah!!!
That’s about 10 times the price it costs to have a full system installed in other parts of the USA.
I put in a small solar backup power system myself for $1500. It’s not enough to power HVAC or any big appliances but it is enough that I can have my fridge, freezer, TV, and Internet going off the grid whenever there’s a power outage.
Similar here, got a quote from a company that wanted $45,000 to only cut my bill in half. Said my roof having so many levels due to being a 1.5 story made it hard to install and get good coverage. Guess I get to just burn coal power then because that price is ridiculous
Just to save $100 a month.
100x12x30
But they will still have to make the monthly payments for the solar panels. So, their real savings will only start after they paid off the loan in 30 years. lol
If I save 100$ a month, sign me up
Some companies in my area are installing them for free, and taking the utility difference. It’s a novel approach.
I want a discount on my electricity if I have to have a solar array on my land. Even if it were otherwise free.
I had a few come over and I was already in the market for solar so I entertained them for a minute. I told them “OK, give me some invoices for your other customers so I know what you charge. Black out the names, I dont care - I just want the prices of your services and materials”. These idiots would not stop calling me or coming over to my house for months. I kept telling them “Unless you give me actual, real world dollar amounts, I won’t consider it”.
Those solar sales guys are worse than used car salesmen.
Further lowering panel cost isn’t going to significantly cut that price. Cost of labor is the major part of that.
People always focus on rooftop solar, but it’s horribly expensive compared to a field of panels. The economics of scale will almost certainly keep it that way.
What we should be looking at is community solar, where neighborhoods invest in a solar field together.
I’ve always thought that in the neighborhoods where everyone lives in townhomes and mini apartments a shared multi floor parkade with solar and maybe also wind on top should be a thing. Even if the solar is just covering the parkade’s power usage.
Wouldn’t that be a less sustainable use of land?
I guess maybe not if we are talking tall building, where the roof surface area may not be sufficient for the entire building. But it would be a waste not to make use of all the unused rooftops
Yeah, in some countries, land is at a premium. No way would it be wasted on just solar panels. Rooftop installations make the most sense.
They are even testing putting them afloat on dam reservoirs.
The installation just keeps getting higher. Now to add onto mine I need a load of additional equipment that was not required when my first lot of enphase inverters was installed. Also what was quoted for the labour and materials that are not the panels and inverters has almost tripled in 4 years. Have to get the roof sorted before I go ahead with it and the higher output panels and inverters mean that I would get about another 1.5kw in the same space compared to my first installation.
Really depends on where you are, sadly.
Where I am, a normal 6.6kw system (panels + inverter + installation) can cost as low as about $1,950usd nothing more to pay. Good for 25 years. (Higher end panels and such can go up to about $4500usd for a 6.6-7kw system)
Damn it’s like 9k to 10k cad where I live.
Yikes, yeah, that sounds sadly normal for a lot of places.
Rooftop solar is the most expensive way to do it. The graph above is for utility scale systems. Roofs are always custom jobs and they’re priced accordingly. Utility scale uses racks that are all the same for an entire field.
If rooftop was priced alone on the chart in OP, it’s be around the price of nuclear.
To ballpark some numbers on the contractor side, I charge about $100/hr to install it now - 4 years ago that might have been $60/hr.
Imagine how steep that line would be if the fossil fuel lobbies hadn’t been fighting it tooth and nail all these years
It would be less steep because solar costs would have come down earlier.
That would make it steeper, no?
This part of the graph (2009-2019) would be less steep, because this sharp drop would have happened earlier - we’d be further along the curve
much more important: we’d be years ahead with storage technology.
I could be wrong but I don’t think there’s any evidence that the fossil fuel industry worked to suppress storage research/funding. Pretty much every IT industry has a huge interest in improving battery tech and energy storage in general, it’s just that we’ve already hit all the low hanging fruit from a chemistry standpoint
I remember hearing stories about oil companies buying up battery patents. But this may be because they want to collect the royalties, not necessarily to suppress any kind of research. But like you said, I don’t think there is any evidence… But if they were suppressing the technology, we probably would never know about it.
My dad was a VP at an oil major and has a literal story of an LNG tech being bought and shelved. Yet he’s still just like the people he complains about in that story. They’re a strange generation, these boomers.
Gotta keep prices high yo
I wish hydroelectricity was there.
https://xkcd.com/1281/
https://xkcd.com/605/
amateurs.
https://xkcd.com/2048/
It’s frustrating seeing a graph showing the price of electricity going down while my utility prices go up. Does this take into account infrastructure cost?
deleted by creator
Yeah energy prices have gone through the roof but apparently it’s cheaper in every way except nuclear - and we don’t even have nuclear around here
The data stops in 2019. It’s completely outdated. The world is in chaos since covid. But anti nuke propagandists don’t care much about these “details”.
Hi, I’m a human being, not an “anti nuke propagandist”. I just checked, if there’s newer data, and well, there is, but no one seems to have formatted that in a way yet, which you or me would be willing to digest.
Personally, my impression has been that the solar industry was one of the industries that was pretty much completely unaffected by COVID, so I felt this graph was still perfectly relevant.
But even if it were strongly affected, I do not see why our technological progress in manufacturing, that we had in 2019, should evaporate with COVID.
There is inflation and a rise in natural catastrophes, but I feel like those would affect nuclear and others roughly proportional.
Well, if you omit batteries then you are mostly true, although with covid there was a huge shortage of electronic components that would affect solar a lot, at least depending on where you live. Batteries is a big unknown now, because with all the demand for it, we simply can’t build enough batteries to feed all the grids with it.
Alright, yeah, good point with the batteries. I’m hoping the batteries in electric cars will double up as storage for the grid (already happening today), but also that there’s just enough redundancy with other renewables.
https://www.powerengineeringint.com/renewables/lcoe-for-offshore-wind-now-on-par-with-coal-bnef/amp/
Covid actually had almost no impact on the prices and they continued to level off a little lower. The surprising one is the onshore wind remaining on par with solar and continues to drop (albeit slowely).
Gas skyrocketed in Europe. Oil is going yo-yo. How does this have no impact on the price?