That’s exactly the sort of thing his work improved. He figured out that graphics hardware assumed all lighting intensities were linear when in fact it scaled dramatically as the RGB value increased.
Example: Red value is 128 out of 255 should be 50% of the maximum brightness, that’s what the graphics cards and likely the programmers assumed, but the actual output was 22% brightness.
So you would have areas that were extremely bright immediately cut off into areas that were extremely dark.
“It’s a bit technical,” begins Birdwell, "but the simple version is that graphics cards at the time always stored RGB textures and even displayed everything as non linear intensities, meaning that an 8 bit RGB value of 128 encodes a pixel that’s about 22% as bright as a value of 255, but the graphics hardware was doing lighting calculations as though everything was linear.
“The net result was that lighting always looked off. If you were trying to shade something that was curved, the dimming due to the surface angle aiming away from the light source would get darker way too quickly. Just like the example above, something that was supposed to end up looking 50% as bright as full intensity ended up looking only 22% as bright on the display. It looked very unnatural, instead of a nice curve everything was shaded way too extreme, rounded shapes looked oddly exaggerated and there wasn’t any way to get things to work in the general case.”
https://help.copyright.gov/contact/s/contact-form
You should also contact your local representatives across the federal government.
If I obtain all the original schematics and software and make 1 Nintendo internals for commercial purposes wothout their permission it would be illegal.
If they do it, it costs them the price of a couple of family dinners at most.
This museum IS NINTENDO. They are the only people allowed to do this job correctly.
GameWorldObserver.
Can they be trusted?