Made harder by brightness being perceived non - linearly. We can detect a change in brightness much easier in a dark area than a light- if the RGB value is 10%, and shifts to 15%, we’ll notice it. But if it’s 80% and shifts to 85%, we probably won’t.
Reminds me of a video I watched where they tested human perception of 60/90/120 FPS. They had an all white screen and flashed a single frame of black at various frame rates, and participants would press a button if they saw the change. Then repeated for an all black screen and a single frame of white would flash.
At 60 and 90 FPS, most participants saw the flash. At 120 FPS, they only saw the change going from black to white.
You are not logged in. However you can subscribe from another Fediverse account, for example Lemmy or Mastodon. To do this, paste the following into the search field of your instance: [email protected]
No game suggestions, friend requests, surveys, or begging.
No Let’s Plays, streams, highlight reels/montages, random videos or shorts.
No off-topic posts/comments, within reason.
Use the original source, no clickbait titles, no duplicates.
(Submissions should be from the original source if possible, unless from paywalled or non-english sources.
If the title is clickbait or lacks context you may lightly edit the title.)
Made harder by brightness being perceived non - linearly. We can detect a change in brightness much easier in a dark area than a light- if the RGB value is 10%, and shifts to 15%, we’ll notice it. But if it’s 80% and shifts to 85%, we probably won’t.
Reminds me of a video I watched where they tested human perception of 60/90/120 FPS. They had an all white screen and flashed a single frame of black at various frame rates, and participants would press a button if they saw the change. Then repeated for an all black screen and a single frame of white would flash.
At 60 and 90 FPS, most participants saw the flash. At 120 FPS, they only saw the change going from black to white.