ByteShape's device-optimized release showing superior TPS-quality tradeoffs across edge and datacenter hardware.

Qwen3-30B-A3B-Instruct-2507 device-optimized quant variants without output quality falling off a cliff.

A 30B runs on a Raspberry Pi 5 (16GB) achieving 8.03 TPS at 2.70 BPW, while retaining 94.18% of BF16 quality. ShapeLearn tends to find better TPS/quality tradeoffs versus alternatives.

What’s new/interesting in this one

  1. CPU behavior is mostly sane

On CPUs, once you’re past “it fits,” smaller tends to be faster in a fairly monotonic way. The tradeoff curve behaves like you’d expect.

  1. GPU behavior is quirky

On GPUs, performance depends as much on kernel choice as on memory footprint. So you often get sweet spots (especially around ~4b) where the kernels are “golden path,” and pushing lower-bit can get weird.

models: https://huggingface.co/byteshape/Qwen3-30B-A3B-Instruct-2507-GGUF

Create a post

This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.


Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.


Rules:

1: All Lemmy rules apply

2: Do not post low effort posts

3: NEVER post naziped*gore stuff

4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.

5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)

6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist

7: crypto related posts, unless essential, are disallowed

  • 1 user online
  • 2 users / day
  • 58 users / week
  • 266 users / month
  • 1.34K users / 6 months
  • 1 subscriber
  • 4.52K Posts
  • 50.4K Comments
  • Modlog