LLMs Will Always Hallucinate, and We Need to Live With This
arxiv.org
external-link
As Large Language Models become more ubiquitous across domains, it becomes important to examine their inherent limitations critically. This work argues that hallucinations in language models are not just occasional errors but an inevitable feature of these systems. We demonstrate that hallucinations stem from the fundamental mathematical and logical structure of LLMs. It is, therefore, impossible to eliminate them through architectural improvements, dataset enhancements, or fact-checking mechanisms. Our analysis draws on computational theory and Godel's First Incompleteness Theorem, which references the undecidability of problems like the Halting, Emptiness, and Acceptance Problems. We demonstrate that every stage of the LLM process-from training data compilation to fact retrieval, intent classification, and text generation-will have a non-zero probability of producing hallucinations. This work introduces the concept of Structural Hallucination as an intrinsic nature of these systems. By establishing the mathematical certainty of hallucinations, we challenge the prevailing notion that they can be fully mitigated.

How would token prediction machine arrive at undecidable? I mean would you just add a percentage threshold? Static or calculated? How would you calculate it?

(Why jfc? Because two people downvoted you? Dood, grow some.)

@[email protected]
link
fedilink
English
11d

It’s easy to be dismissive because you’re talking from the frame of reference of current LLMs. The article is positing a universal truth about all possible technological advances in future LLMs.

@[email protected]
link
fedilink
1
edit-2
1d

Then I’m confused what is your point on Halting Problem vis-a-vis hallucinations being un-mitigable qualities of LLMs? Did I misunderstood you proposed “return undecided (somehow magically, bypassing Halting Problem)” to be the solution?

@[email protected]
link
fedilink
English
11d

First, there’s no “somehow magically” about it, the entire logic of the halting problem’s proof relies on being able to set up a contradiction. I’ll agree that returning undecidable doesn’t solve the problem as stated because the problem as stated only allows two responses.

My wider point is that the Halting problem as stated is a purely academic one that’s unlikely to ever cause a problem in any real world scenario. Indeed, the ability to say “I don’t know” to unsolvable questions is a hot topic of ongoing LLM research.

Create a post

This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.


Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.


Rules:

1: All Lemmy rules apply

2: Do not post low effort posts

3: NEVER post naziped*gore stuff

4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.

5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)

6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist

7: crypto related posts, unless essential, are disallowed

  • 1 user online
  • 66 users / day
  • 111 users / week
  • 356 users / month
  • 1.48K users / 6 months
  • 1 subscriber
  • 4.29K Posts
  • 49.4K Comments
  • Modlog